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Motor control

A research field that studies:

- How sensory information from the body and the environment are

integrated and used to control actions?

- How does an individual use these information to select an
appropriate action for a given objective?
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Computational Motor control

A research field that studies:

- How sensory information from the body and the environment are
integrated and used to control actions?

- How does an individual use these information to select an
appropriate action for a given objective?
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We need to have the knowledge of the system model
(implicit or explicit)




Links engineering <> neuroscience

* Cybernetics
* (Optimal) control theory

— Many concepts put forward:

- Negative feedback

- Feedforward control

- Stochastic control

- Control of over/under actuated systems

- State estimation

- Movement planning (with optimization criteria)
- Adaptive control

How far can these concepts inspire our understanding of
(biological) motor control?

Links engineering <> neuroscience

An interdisciplinary field: psychology, medicine,... engineering!




Links engineering <> neuroscience

How far can these concepts inspire our understanding of biological
motor control?
Not a clear answer...

* Complex multi-layer and distributed systems:

“box charts” approach not always feasible

Voluntary
movements

Rhythmic (automatic)
movements

X Rapid responses
O ‘reflexes’

Mixture of experts

Hierarchy in the nervous system:
— how to choose the right combination according to contexts?

split

* Divide and conquer

* Mixture of experts

split split
Compute Compute Compute Compute
subproblem ubproble subproblem ubproble

merge IMNerge




Links engineering <> neuroscience

How far can these concepts inspire our understanding of biological
motor control?
Not a clear answer...

* Complex multi-layer and distributed systems:
“box charts” approach not always feasible

101° neurons
10 synapses
100 000 miles of dendrites
# different potential tracks:
1 followed by 7 millions miles of 0’s

Our brain is capable of generating more ideas than
atoms in the Universe

Links engineering <> neuroscience

How far can these concepts inspire our understanding of biological
motor control?
Not a clear answer...

* Complex multi-layer and distributed systems:
“box charts” approach not always feasible

* Several seconds: complex movement

* 1s: elementary actions (motor cortex, basal ganglia)

* 500 ms: decomposition in trajectories

* 10 ms: decomposition in positions, velocities and muscle forces (CB)

* 1 ms: impulsion trains to motoneurons




Links engineering <> neuroscience

How far can these concepts inspire our understanding of biological
motor control?

* Evolution came up with strategies developed in a long time scale not
yet transferred to robotics/engineering

* A striking similarity between control theory and motor control:
Time-delayed systems lead to the notion of internal models

* Inspiration of what approaches are possible to solve a certain
problem

* Provides a baseline of what optimal performance can be achieved in
theory

* Direct applications are possible in some fields (e.g. oculomotor)
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Model

® GF: Grip Force
@ LF : Load Force
@ W : Weight

Typical result derived from a simple approach

Before anesthesia
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Typical result derived from a simple approach

Before anesthesia

During anesthesia
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Model => (over)simplification

Tribology:

Research field
that studies
friction between
bodies

(in particular,
non elastic).

a High friction (latex membrane)
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Computational Motor control

Huge interest!
Formalizing mechanisms underlying action can help to shed light on:

- What drives actions?

- How does (re)learning work?

- How do we consolidate what we’ve learned?
- How to design optimal rehab protocols?

- Predictive tool

P e

So far...

* Heritage from control theory
* Real system is complex...
* ... as are fine models!

* But great interest

10



Contents

1. Introduction and intuition of computational motor control
*  From engineering to neuroscience, and back
* Intuition
*  Box chart approach and some physiological evidence
* Internal models
*  Learning mechanisms
*  Bayesian brain
*  Open questions

2. Kalman filtering
*  Rationale
*  (simple) statistics refresher
*  Derivation of the Kalman Filter
*  Examples in sensorimotor control

3. Stochastic Optimal Feedback Control

600 millions years ago...

What separates plants and animals is that animals can move.
To control movement, multi-cell organisms developed a
nervous system.

Development of the nervous system
began when multi-cell organisms began
to move.

The sea squirt: In larval form, is free
swimming and is equipped with a brain-
like structure of 300 cells.

Upon finding a suitable substrate, it
buries its head and starts absorbing
most of its own Brain and looses its
ability to move.
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Box chart

Figure 1

Higher level processing
and decision making

Motor command

Moven_)ent Coordinalte ‘
planning transformations generation
T l Noise
Sensor
processing

Sketch of a generic motor control diagram, typically used in robotics research, that can also function as a discussion guideline for biological

motor control.

Decision making
Motor planning
Coordinate transformation
Plant to motor commands

uhwNRE

Processing of sensory information

Three examples of computational models

1. Feedback control: stretch reflex with <0 feedback

- Muscle spindle report muscle extension to the spinal cord
- Thatinfo is fed back in the motor command (1! Synapse)

alpha

gamma

Muscle
& Joint

Muscle
spindle

joint
angle
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Three examples of computational models

2. Optimality approach: minimum jerk

Flash & Hogan, J Neurosci, 1987

- Observation: straight movements in extrinsic space
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o

Three examples of computational models

3. Error-based learning

- Observed error (feedback) drives learning

- Gradient descent to minimize — even cancel — error signal
- Trial by trial adaptation
- Typical experimental approach:

Erreur

Visuomotor rotations or reaching in force fields

Pré \ Perturbation  Post

- Will be detailed later

/ Temps
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Three examples of computational models

3. Error-based learning

Typical experimental approach: visuomotor rotations

T
LB

Three examples of computational models

Error-based learning

Typical experimental approach: visuomotor rotations
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Again: physiologically plausible?

Internal models are implemented in the primary motor

cortex and in the cerebellum

A. Forward (direct) models

B. Inverse models A
Noise
Action System
Input model
B
Desired
state
Inverse
—_—
Input system model

Resulting
state

Output

Required
action

Output

Behavioral evidence: forward model

Predictor
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coj
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3 4
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command \
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Behavioral evidence: forward model

Predictor

Efference
= e
\ S

Predicted
load

Time

Current Biology

How to deal with the many contexts?

Fredictor

__________ sgnal | Responsibifty |,
Etterence S
4 sopy of
01
command Forward
X (amm & obj
desirad

trejactory
Predicted trajectory

Motor command

am
trapclory

Kawato, 1997, Curr Opin Neuro
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Noise, noise, noise

a Sensory noise b Cellular noise

Electrical noise

Sensory transduction and amplification | {Receptor [,
rieyron

€ Motor noise

Muscle

/

¥ spinal cord

Motor neuron

", Voltage-gated &
".ion channel |

».| Excitable membrane *» | Network of neurons

Synaptic noise

Noise, noise, noise

Strategies developed by the motor system to minimize the
effects of noise on movements?

e Generate smooth movements!

— signal-dependent noise

Noise variance

e ' s —‘
o
P . W ™|
e ".'. B
s r s e ]
Mean signal
(b)
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Evidence of sensory noise

The SD of noise grows with mean force in an isometric task. Participants produced a given force with their thumb
flexors. In one condition ( “voluntary”), the participants generated the force, whereas in another condition ( “NMES”)
the experimenter electrically stimulated their muscles to produce force. To guide force production, the participants
viewed a cursor that displayed thumb force, but the experimenters analyzed the data during a 4-s period in which this
feedback had disappeared. A. Force produced by a typical participant. The period without visual feedback is marked
by the horizontal bar in the 1st and 3rd columns (top right) and is expanded in the 2nd and 4th columns. B. When
participants generated force, noise (measured as the SD) increased linearly with force magnitude. Abbreviations:
NMES, neuromuscular electrical stimulation; MVC, maximum voluntary contraction. Jones et al. 2002 JNP.

Voluntary contraction Electrical stimulation of
of the muscle the muscle
A Voluntary NMES B
4 sec 4 sec

10 4
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Integrated approach

Stochastic optimal control theory

* Promising but complex (not established for non linear systems)

* Model plant, environment and noise

* Account for a large body of experimental data

* Exists limitations... why does variability decrease if co-contraction?

3
E
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18



Optimal control: core equations

System Cost to go
Ay = Axg+ B + 5 + Z £ Citty., Jebom) = xf Qv+ uRue.  k=12,....N-1,
i=1
g
v = Hre+op+ Z SixDixe. Total cost -
o J=E J’_,\.- (xp)+ Z J.Q.f_.l'_q.. ).
k=1
-1
we = —(B'UiB+R+Ti) B UnAfy.
= —L,g—(.\'k - {’,g—).
Controller w; = —LX;
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i
S¢ = ATSY BLi+(A— K:H)' S¢,, (A— K:H): Se=0
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i
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Effort!

State |

State i+1

State i+1

Reward!
State |
State i+1 State i+1
BEWARD '

a(w

BUTCH CASSIDY

three other wnknown cow-boys, wnated in cannaction with the

ety
guei County, Tethuride, Colorsda




Types of rewards

Vegetative needs of individual subject
* Food
* Liquid

Reproduction of genes
* Sex

Higher and mental rewards
* Money
* Novelty and challenge
* Taste, pleasantness, beauty
* Acclaim and power
* Altruistic punishment
* Territory and Security

How to achieve a more rewarding state?

Translating goals into motor commands

Reward expectation
of sensory
states

State
change

commands
A

Belief about states of
Body and world

Predicted
sensory
consequences

Measured
sensory
consequences
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What to do - locations

Selection of action based on a value function associated with locations on a spatial map
Associating reward to a location on a spatial map depends on the hippocampus

Mouse is released into a pool of water from any starting
point. A platform is positioned in a specific location just
below the water line. The platform is always at the same
location.

The normal rat can learn to locate that position with respect
to the cues that surround the pool. This requires learning a
spatial map of where the platform is located with respect to
the surrounding visual cues.

With repeated swims, the animal learns a spatial map and
find the platform regardless of where he is released into the
water. If the platform is removed, the normal animal will
spend most of his time searching in the quadrant where the
platform should be.

Learning of this sort of spatial map depends on the
hippocampus. If a genetically altered rat with a
malfunctioning hippocampus is given the same training, he
will not learn the spatial map and will spend equal time in
each guadrant.

What to do - objects

Selection of action based on a value function associated with objects
Associating reward to stimuli regardless of their location depends on the basal ganglia

In this task, there are two platforms. One that is large enough for
the mouse to mount, and one that is too small. Both have a
visual cue associated with them. The platforms may be
positioned in any quadrant. Animal performs 8 swims per day for
15 days.

The animal needs to learn that the green ball, and not the other
ball or surrounding cues, is important and that it indicates
location of the platform. He needs to ignore the memory of the
spatial position of the platform in the previous trial.

Every time the animal tries to mount the platform below the gray
ball, an error is recorded.

Lesion in the caudate severely disrupts the ability of the animal
to recognize that across repeated trials, the only cue that
consistently predicted platform location was the green ball.

Mean Number of Errors

—&— Control
1{ —®— Caudate
—0O— Fomix

Lesion in the hippocampus has no effect. Because the spatial — I
cues are irrelevant to finding the platform, the animal behaves AR g AR R Ll
normally.
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Dopamine neurotransmitter

Dopamine releasing neurons have their cell bodies in the brain stem.

Neurotransmitter: chemical that sends signals HO NH
from one cell to another cell.
Reward increases dopamine level in the brain.

HO C,H_NO
Five dopamine receptors: D1 to D5.

They project to 3 main areas:

- the striatum (nigrostriatal tract)

- the hippocampus (mesolimbic tract)
- prefrontal cortex (mesocortical tract)

Substantia

Basal Ganglia and Limbic System

Where dopamine is
manufactured

Dopamine neurotransmitter

Dopamine is the main teaching signal for the basal ganglia. 55;%?@
80% of the brain’s dopamine is in the basal ganglia. i

This figure shows a dopamine neuron in substantia nigra
that responded to unexpected rewards that occurred in
association with a visual cue. p=025

As the probability of reward increased, the cell’s response
after the reward decreased, responding instead to the
visual cue, which now predicted the reward.

Cells respond to reward, when probability=0.
Cells respond to visual cue, when probability=1
(visual cue is now associated to reward).

i b
stimulus on reward
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A word on eye movements

Smooth pursuit

Saccades

Rewarding behaviors

Reward implies faster movements and increased activity in the caudate nucleus
of the basal ganglia.

Contralateral saccade latency (ms)

Discharge rate (spikes s-)

400

350

300}

250

200

150

No-Reward trials

‘ Reward trials

25

20

L . L .
0 5 10 15 0 5 10 15
Trial order from reversal of position-reward contingency

L ‘ Contralateral reward ‘

\
e A

Ipsilateral reward

‘ . \ . \ . .
0 5 10 15 0 5 10 15
Trial order from reversal of position-reward contingency

BE NE

Foy A4

Activity of a neuron in the caudate nucleus as a
monkey made saccades to a leftward target.

At the beginning of the plot, the leftward saccade
did not produce reward, but a rightward saccade
did. The monkey reacted to the onset of the left
target with a response latency of approximately
300ms, and the cell discharged at about 8
impulses per second.

On the trial following the left vertical line (the
first 0 on the x-axis), the leftward saccades
produced a reward. After the monkey
experienced this “contingency” once, its reaction
time quickened by nearly 100 ms and the cell’s
discharge rate nearly doubled.
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Generating motor commands

Choosing the best movement that produces the largest reward while
minimizing motor cost (effort)

State
change
Goal select Body +
commands Environment?
N
Belief about states of
Body and world
. Predicted
Integration W Forward model
A ry A Delay
consequences
Sensory system
Proprioception
Measured Msion
Audition
sensory Touch
consequences

Evolution of control policies

1928 1936 1968
1.59m 2.03m 2.24m
-

-

Ethel Catherwood (Canada) Cornelius Johnson (USA) Dick Fosbury (USA)
gold medal winner gold medal winner gold medal winner
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Eye movements

Two types of eye movements:
smooth pursuit and saccades. Peak Velacity

Main sequence for saccades: robust relationship between

- Amplitude — Eye posiion
- Duration - Eye Velocity
- Peak velocity

) ) — Llatency =4 A
Linear Exponential A== Latency -
=0ms Duraticn
D=221A+21 PV =134 6A°%
00
600 A ',‘; -:"
e
. 500+ - .4
é g 400+ . "
g = "
2 z 00
= 200+
100}

0 10 20 30 40 ] 10 20 30 40
Amplitude Amplitude

Eye movements

Costs involved in making a saccade:

1. There is something interesting off to one side of my fovea. | want to fixate
this interesting thing, and | incur a cost by not looking at it.

2. During the eye movement, | am effectively blind. The eye movement should
complete as soon as possible.

3. A fast movement requires large motor commands. The larger the motor
command, the larger the noise in those commands. Noisy motor commands
produce inaccurate movements.

Policy: Try to find a way to move the eyes to the target as soon as possible,
while minimizing the motor commands.
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Internal models

Predicting consequences of motor commands: internal models

State
change
Goal selector Control policy Motor Body +
(costs and rewards of an action) commands Environment?
A
Belief about states of
Body and world
Integration Predicted
A sensory A Delay
consequences
Sensory system
Proprioception
Measured Visicn
Audition
sensory Touch
consequences
Internal models
Prediction Reaction time
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Internal models: eye/hand coordination

When subjects are asked to use their eyes to track their hand during an
active movement, the eyes look ahead by about 200ms.

Active trials: subject move their hand but cannot see it.

~ 120 120
E 100 100
=80 80
& 60 60
S 4 40
% 20 —_ -, 20
g o Eye position 0
0 02 04 06 08 1 12 14 0 02 04 06 08 1 12 14
Hand movement time (sec) Hand movement time (sec)

About 200ms after a saccade, the hand
reaches where the eyes are looking.

hy(t+196ms)

m=0.95
b=2.4 mm
R2=0.95

Internal models: eye/hand coordination

When subjects are asked to use their eyes to track their hand during a
passive movement, the eyes lag behind the hand.

Passive trials: robot moves the hand.

40 - -
Perpendicular dir.

20t /\\|

- |

Parallel dir.
100}

Displacement (mm)

50t o

0 0.5 1 sec
Hand movement time
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Internal models: cerebellum

Predicting the sensory consequences of motor commands depends on the cerebellum

Patient HK (cerebellar agenesis)

Experimental conditions:

1) Experimenter drops the ball at !
random times. This tests the acceleration
sensory feedback pathways.

2) The subject holds the ball and
drops it. This tests the

predictive pathways. J>

load force

Nowak et al. (2007) Neuropsychologia

Internal models: cerebellum

Feedback: normal motor responses to perturbation

(@) healthy subjects (b)  cerebellar agenesis
experimenter-release condition

28 28
o R,
N A N)
& o e T ——— &
300 3 trials 10
grip force grip force \/\
rate (N/s) rate (N/s) A
Nt~
<100 “ -30
14 14
acceleration o acoeler:tion /\\
mis? \ (m/s?) V
14t -14

500 ms

500 ms

Nowak et al. (2007) Neuropsychologia

29



Internal models: cerebellum

Feedforward: no ability to predict sensory consequences of self-
generated motor commands

self-release condition

28 Healthy subjects 28 - Patient HK
grip force ,,L\ grip force \..\\\~
™ \ A ) ik
g T, et
- S 4 %
300 300
grip force grip force
rate (N/s) NS rate (N/s)
-100 - A -100 N
14 14
acceleration [r\n.c_ acceleration
(mis?) \ / (mis?) \ /
-14 -14 -
500 ms 500 ms

Nowak et al. (2007) Neuropsychologia

... so far...

* Implementation of smart mechanisms need a CNS

* Simple (jerk) to complex (OFC) approaches

* How to deal with the myriad contexts, noise, delays...
* Behavioral and clinical evidence of IM

* What drives action (reward, effort)

* Evolution of control policies

 But still: how do we learn??
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Motor learning

Internal models must cope with changes all the time
How do we learn??

A\ Change Scale

Structural

Change Evolution
Functional

Change Learning

Parametric .

No Feedback :

Change Time Scale

mSec Sec Days Years MYears

Karniel, 2011, Front in Neurosci

Motor learning

Internal models must cope with changes all the time
How do we learn flexibly and efficiently??
Generalization Transfer Consolidation

®

Generalization formalized with RBF: Purkinje cells fire at preferred
spatial directions
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Motor learning

Internal models must cope with changes all the time
How do we learn flexibly and efficiently??

(b) (c)

100
= Gain
b 80 # 0.04
2 o? o T
3 60 g <
— O (o) o]
= @0 et ]
g 40 O;@ 2 & 0.02 |
S < © ‘
% = o M ‘ | Variance o2
0 N 0 -
—45 0 45 —45 0 45
Preferred orientation (deg) Orientation (deg)

Generalization formalized with RBF: Purkinje cells fire at preferred
spatial directions

Knill and Pouget, Trends Neurosci, 2004

Motor learning

Again, ambiguity because of redundancy

- Coordinate transformation from Cartesian space to muscle space
- #ext dof << #int dof (muscles: 100:1, joints: 30:1)

- Degree-of-freedom problem: Bernstein 1967

- How to interpret an error signal?

32



Credit assignment problem

This question can be translated experimentally in a
redundant task

a b _
Correction r'y Ri 09 i
ight o
“2 E” 1 e °
o T
/I : : : iy
i ¥ : E Q0
§ i I S Bl .
H § 5 © o0." Og
H g 5 = o
H g 3 o .48% i
i H = ° :
[ ] I | o |
| < |
.
(£ Left :
0.1 t 1
0.1 05 09
Cursor Left Right
Correction asymmetry

White and Diedrichsen., Curr Biol, 2010.

Credit assignment problem

In complex high level movements, causality is sometimes
hard to infer: Reinforcement learning may be a better
strategy

If a tennis player systematically misses her serve, which is
responsible?

- fatigue?

- Racket too lose?

- Hit too early

33



Reinforcement learning

* In complex high level movements, causality is sometimes
hard to infer: Reinforcement learning may be a better
strategy

* Associate an action to a reward provided by the system
* Goal: max discounted reward over time (dopamine!)

* Needs other information such that relative
success/failure of movement

e Because RLis inherently unsigned, exploration is
important and slows the learning process down

Motor learning

Again, ambiguity because of redundancy

* Freeze or sleeve: decrease #dof by linking unrelevant dof together
But... cannot explain why on average the variability in internal
coordinates > variability in task-space coordinates

. S Fig. I. Redundancy exploitation. The system
Optimal control + Redundancy elimination  described in the text (with X* =2, a = ¢ = 0.8)

was initialized 20,000 times from a circular two-

X 0}@ dimensional Gaussian with mean (I, 1) and vari-
’g;& Initial  ance |. The control signals given by the two

8 control laws were applied, the system dynamics

. simulated, and the covariance of the final state

x measured. The plots show one standard deviation

ellipses for the initial and final state distributions,

for the optimal (left) and desired-state (right)

control laws. The arrows correspond to the

° effects of the control signals at four different initial
Xi %, Xi states (scaled by 0.9 for clarity).
% Y Y

Initial

X2

Todorov and Jordan, Nat Neurosci, 2002
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Motor learning

Again, ambiguity because of redundancy

* Operational space control and Inverse kinematics control
Desired movement in task space can be transformed in desired
movement in internal space
— Need Jacobian of the kinematics of the movement system

Partition of dof:

* Asubset of (chosen) dof are constrained

* Unconstrained manifold: dof used to optimize other criteria
(energy expenditure, joint limits etc)

Error based learning

Generic approach: A Ch—

CCW rotation

Target ¢
(ccw)

Pré \ Perturbation  Post
/ Temps

Erreur
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Error based learning

Importance of error magnitude and direction
Need to estimate gradient of error wrt each component
of the motor command

START

So powerful that adaptation occurs trial by trial even if
explicit instruction NOT to adapt

Experimental perturbations

Force fields stimuli allow simulation of new objects
- Elastic

- Viscous
- Inertial

- Gravitationnal **
- Unstable

- Combinations of these types

36



Error based learning

Problems of local optimumes...

En

v

Explains many behavioral results
Visuomotor, force fields, grip force

The CB and neo-cortex play a crucial role in error based
learning

Impedance control

Null field, NF
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Impedance control

Null field, NF

y (cm)

Divergent field, DF

Initial After After-

trials learning effects

Use-dependent learning

— How to improve further??

7\
Z

2 Parallel mechanisms

- Error-based

- Use-dependent

=
\

;
Z2 Y

.
>

Solution

Contribution Main D
T

Nouvelle
Solution

L.

Contribution Main G
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Use-dependent learning

» State of the motor system can change through pure
repetitions even in absence of outcome

A Passive movements B
g° t
o Of "
) JEU e VO
T -4t i
5 2 8
:!;“ o 1 1 1 1 1 1 1

W 0 10 20 30 40 5 60 70
Trial

Diedrichsen et al., JN, 2010.

Use-dependent learning

* Combinations of different learning mechanisms occur

A B 1 A
8 o~
(o] v
= \'\-'\.—-
4
20 30

Initial angle [deg]
o & & N o

Diedrichsen et al., JN, 2010.
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Structural learning

Combinations of different learning mechanisms occur

Parameters of a specific task can be learned quickly
through e.g. Error-based learning

Expose someone to RND perturbation sharing the same
structure

— What about the structure of the task?

A change of gravity?
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Ground-based facilities

Table A.1: Comparison between microgravity platforms.

Platform

p-g level (g) Duration Volume (%) | Control

Drop towers 10-%-10-°¢ <55 <1 indirect
Parabolic flights 1072- 1073 20-25 > 10 direct
Sounding rockets 107*-107° 5- 13 min <1 indirect
Recoverable capsules <10-° weels =1 indirect
Manned orbital platform (ISS) | 1072 - 107° | weeks - years >1 direct
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A good approach to test structural learning

A good approach to test structural learning
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Parabolic flights

Plane weight W = mg
thrust T = ma
Aerodynamics drag D = p";ACD(a}
lift L = p%ACL(a)

Parabolic flights
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Parabolic flights
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PARABOLAS SEQUENCE
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Range of gravity explored

x Negative g

Positive g

2 1 0 o1 0% 1 T grmﬁ’
i I |
Hypergravity Hypogravity : Hypergravity = °°"*""

Know pretty well

Centrifuges




Can we learn anything?

* There are conditions in which learning is impossible (or
very difficult)
* Examples: conflicting force fields, force fields varying
explicitly on time
- Q[:Ji.?qr‘ns' ) 250 ms
EeotéQe CEECEE] v ¢« € € €
%c—c—q—c—ee L e € « € « €
zeefu-c-e €CECEECECE € € € € « €
Lle €« « « ¢« « CECECEE] e € ¢« € & €
x‘:p(;l;veﬁll. = & 4 4 & &
10
z
0 n i
0 83 167 250 333
time (ms}
Can we learn anything?
* Relevant cue for conflicting FF learning
d Unimanual learning Bimanual learning
Unimanual learning b Bimanual learning
Uni  Bi Uni  Bi Uni Bi Uni  Bi
Final learning After bimanual washout Final learning  After unimanual washout
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The Bayesian brain

* Sensorimotor memory is a inestimable source of
knowledge

* How to update that database?

* Real world is uncertain, feedbacks are in different
modalities, guesses are necessary... probabilities!

* Bayesian inference: optimal integration of prior

knowledge and sensed noisy information

P(rly) = Plylr) P(x)

P(y)

*  Many artificial and biological neural nets can be interpreted as Bayes optimal
signal processing systems, despite possessing neither explicit knowledge of
Bayes rule nor knowledge of the probability distribution of the involved

variables

Humans behave in a Bayes optimal way

(a)  Sensor noise

an?. Visual

. Proprioceptive
A

. 4
;f

f leellhood

’ Postenor \
T EnE

=

Weight of prior

o

G aq O

Increasing perceptual uncertainty
[ —

Motor noise

(c) Projector
Screen

i
\ﬂjfl\_ Sensor

Subject

Mirror

e

Inferred prior (AU)

Lateral shift (cm)

(A) Sensory noise results from
different uncertainties. Motor noise
will induce variability on the target.

(B) lllustration in tennis: integration
of likelihood with priors.

(C) Reliance on priors increase with
uncertainty about the environment.

Koerding et al., 2006
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Mathematical view of motor control

Sensory state of our body and
the world we interact with

L1
Y
What we can observe/,
about the state
Total cost to J

minimize
Feedback control policy Up

Belief about state Tyt

Motor command

= Aur, + DB ({tk - uﬂ/

= Huy + vy,

— Sensory noise

Motor noise

p—1
A T

= E Y1 Q1 Yrert[H ug Rkuk)

k=0

= — Ly,

Tracking cost Control cost

= Arp + ARy (ye — Ur) + Buy
AN
Measured Predicted sensory
sensory consequences
consequences

Mathematical view of motor control

Parkinson disease

caudate

In PD, there is a degeneration of
dopaminergic neurons in the substantia
nigra. This results in severe loss of
dopamine in the basal ganglia, especially
the putamen.

These patients exhibit very slow
movements (bradykinesia), very low voice,
and very small writing (micrographia).

Loss of dopamine can be viewed as a loss
of expected reward, which in turn
increases the relative costs of the motor
commands with respect to the expected
reward.

T T
Vi1 Qe 1 Y|+ [ B

Expected reward of

Motor cost for a
a movement movement
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