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A research field that studies:

- How sensory information from the body and the environment are 
integrated and used to control actions?

- How does an individual use these information to select an 
appropriate action for a given objective?

Motor control
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Computational Motor control

A research field that studies:

- How sensory information from the body and the environment are 
integrated and used to control actions?

- How does an individual use these information to select an 
appropriate action for a given objective?

We need to have the knowledge of the system model 
(implicit or explicit)

Description in terms of a set 
of differential equations

Control theory



4

Links engineering  neuroscience

• Cybernetics
• (Optimal) control theory

 Many concepts put forward:

- Negative feedback
- Feedforward control
- Stochastic control
- Control of over/under actuated systems
- State estimation
- Movement planning (with optimization criteria)
- Adaptive control

How far can these concepts inspire our understanding of 
(biological) motor control?

An interdisciplinary field: psychology, medicine,… engineering!

Links engineering  neuroscience
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Links engineering  neuroscience

How far can these concepts inspire our understanding of biological 
motor control?
Not a clear answer…

• Complex multi-layer and distributed systems: 
“box charts” approach not always feasible

Rhythmic (automatic)

movements

Voluntary

movements

Rapid responses

‘reflexes’

C
o
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le
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y

Mixture of experts

Hierarchy in the nervous system: 
 how to choose the right combination according to contexts?

• Divide and conquer
• Mixture of experts
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Links engineering  neuroscience

How far can these concepts inspire our understanding of biological 
motor control?
Not a clear answer…

• Complex multi-layer and distributed systems: 
“box charts” approach not always feasible

1010 neurons

1014 synapses

100 000 miles of dendrites

# different potential tracks:

1 followed by 7 millions miles of 0’s

Our brain is capable of generating more ideas than 

atoms in the Universe

Links engineering  neuroscience

How far can these concepts inspire our understanding of biological 
motor control?
Not a clear answer…

• Complex multi-layer and distributed systems: 
“box charts” approach not always feasible

• Several seconds: complex movement

• 1 s: elementary actions  (motor cortex, basal ganglia)

• 500 ms: decomposition in trajectories

• 10 ms: decomposition in positions, velocities and muscle forces  (CB)

• 1 ms: impulsion trains to motoneurons
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Links engineering  neuroscience

How far can these concepts inspire our understanding of biological 
motor control?

• Evolution came up with strategies developed in a long time scale not 
yet transferred to robotics/engineering

• A striking similarity between control theory and motor control:
Time-delayed systems lead to the notion of internal models

• Inspiration of what approaches are possible to solve a certain 
problem

• Provides a baseline of what optimal performance can be achieved in 
theory

• Direct applications are possible in some fields (e.g. oculomotor)

Model
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Model

Typical result derived from a simple approach
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Typical result derived from a simple approach

Model => (over)simplification

Tribology: 

Research field
that studies
friction between
bodies
(in particular, 
non elastic).
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Huge interest!

Formalizing mechanisms underlying action can help to shed light on:

- What drives actions?
- How does (re)learning work? 
- How do we consolidate what we’ve learned?
- How to design optimal rehab protocols?
- Predictive tool

Computational Motor control

So far…

• Heritage from control theory
• Real system is complex…
• … as are fine models!

• But great interest
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Contents

1. Introduction and intuition of computational motor control
• From engineering to neuroscience, and back
• Intuition
• Box chart approach and some physiological evidence
• Internal models
• Learning mechanisms
• Bayesian brain
• Open questions

2. Kalman filtering
• Rationale
• (simple) statistics refresher
• Derivation of the Kalman Filter
• Examples in sensorimotor control

3. Stochastic Optimal Feedback Control

What separates plants and animals is that animals can move.
To control movement, multi-cell organisms developed a
nervous system. 

600 millions years ago…

Development of the nervous system 
began when multi-cell organisms began 
to move.

The sea squirt: In larval form, is free 
swimming and is equipped with a brain-
like structure of 300 cells. 

Upon finding a suitable substrate, it 
buries its head and starts absorbing 
most of its own Brain and looses its 
ability to move.
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Box chart

1. Decision making
2. Motor planning
3. Coordinate transformation
4. Plant to motor commands
5. Processing of sensory information

Three examples of computational models

1. Feedback control: stretch reflex with <0 feedback

- Muscle spindle report muscle extension to the spinal cord
- That info is fed back in the motor command (1! Synapse)
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2. Optimality approach: minimum jerk

- Observation: straight movements in extrinsic space 
=> bell-shaped velocity profiles

- System is optimal in some sense: 

Flash & Hogan, J Neurosci, 1987

Three examples of computational models

3. Error-based learning

- Observed error (feedback) drives learning
- Gradient descent to minimize – even cancel – error signal
- Trial by trial adaptation
- Typical experimental approach:

Visuomotor rotations or reaching in force fields

- Will be detailed later

Three examples of computational models
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Three examples of computational models

3. Error-based learning

- Typical experimental approach: visuomotor rotations

Three examples of computational models

3. Error-based learning

- Typical experimental approach: visuomotor rotations

- Notion of catch trials 
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Again: physiologically plausible?

Internal models are implemented in the primary motor 
cortex and in the cerebellum

A. Forward (direct) models
B. Inverse models

Behavioral evidence: forward model
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Behavioral evidence: forward model

How to deal with the many contexts?

Kawato, 1997, Curr Opin Neuro



17

Noise, noise, noise

Noise, noise, noise

Strategies developed by the motor system to minimize the 
effects of noise on movements?

• Generate smooth movements!
 signal-dependent noise
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Evidence of sensory noise

A B

Electrical stimulation of 

the muscle

Voluntary contraction 

of the muscle

The SD of noise grows with mean force in an isometric task. Participants produced a given force with their thumb
flexors. In one condition ( “voluntary”), the participants generated the force, whereas in another condition ( “NMES”)
the experimenter electrically stimulated their muscles to produce force. To guide force production, the participants
viewed a cursor that displayed thumb force, but the experimenters analyzed the data during a 4-s period in which this
feedback had disappeared. A. Force produced by a typical participant. The period without visual feedback is marked
by the horizontal bar in the 1st and 3rd columns (top right) and is expanded in the 2nd and 4th columns. B. When
participants generated force, noise (measured as the SD) increased linearly with force magnitude. Abbreviations:
NMES, neuromuscular electrical stimulation; MVC, maximum voluntary contraction. Jones et al. 2002 JNP.

Integrated  approach

Stochastic optimal control theory
• Promising but complex (not established for non linear systems)
• Model plant, environment and noise
• Account for a large body of experimental data
• Exists limitations… why does variability decrease if co-contraction?

Osu et al., JNP, 2002
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Optimal control: core equations

System Cost to go

Total cost

How to choose a movement?

State i

State i+1 State i+1

? ?
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Effort!

State i

State i+1 State i+1

Reward!

State i

State i+1 State i+1
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Types of rewards

Vegetative needs of individual subject
• Food
• Liquid

Reproduction of genes
• Sex

Higher and mental rewards
• Money
• Novelty and challenge
• Taste, pleasantness, beauty
• Acclaim and power
• Altruistic punishment
• Territory and Security

How to achieve a more rewarding state?

Translating goals into motor commands

Control policy
(costs and rewards of an action)

Body + 
Environment

Forward modelIntegration

Sensory system
Proprioception

Vision
Audition

Touch
…

State

change
Motor

commands

Delay

Predicted

sensory

consequences

Measured

sensory

consequences

Belief about states of

Body and world 

Reward expectation

of sensory

states
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What to do - locations

Selection of action based on a value function associated with locations on a spatial map
Associating reward to a location on a spatial map depends on the hippocampus 

Mouse is released into a pool of water from any starting 
point. A platform is positioned in a specific location just 
below the water line. The platform is always at the same 
location.

The normal rat can learn to locate that position with respect 
to the cues that surround the pool. This requires learning a 
spatial map of where the platform is located with respect to 
the surrounding visual cues.

With repeated swims, the animal learns a spatial map and 
find the platform regardless of where he is released into the 
water. If the platform is removed, the normal animal will 
spend most of his time searching in the quadrant where the 
platform should be.

Learning of this sort of spatial map depends on the 
hippocampus. If a genetically altered rat with a 
malfunctioning hippocampus is given the same training, he 
will not learn the spatial map and will spend equal time in 
each quadrant.

What to do - objects

Selection of action based on a value function associated with objects
Associating reward to stimuli regardless of their location depends on the basal ganglia

In this task, there are two platforms. One that is large enough for 
the mouse to mount, and one that is too small. Both have a 
visual cue associated with them. The platforms may be 
positioned in any quadrant. Animal performs 8 swims per day for 
15 days.

The animal needs to learn that the green ball, and not the other 
ball or surrounding cues, is important and that it indicates 
location of the platform. He needs to ignore the memory of the 
spatial position of the platform in the previous trial.

Every time the animal tries to mount the platform below the gray 
ball, an error is recorded.

Lesion in the caudate severely disrupts the ability of the animal 
to recognize that across repeated trials, the only cue that 
consistently predicted platform location was the green ball.

Lesion in the hippocampus has no effect. Because the spatial 
cues are irrelevant to finding the platform, the animal behaves 
normally. 
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Dopamine neurotransmitter
Dopamine releasing neurons have their cell bodies in the brain stem.

Neurotransmitter: chemical that sends signals
from one cell to another cell. 
Reward increases dopamine level in the brain.

Five dopamine receptors: D1 to D5.

They project to 3 main areas: 
- the striatum (nigrostriatal tract)
- the hippocampus (mesolimbic tract)
- prefrontal cortex (mesocortical tract)

2118
NOHC

Where dopamine is 

manufactured

Dopamine neurotransmitter

Dopamine is the main teaching signal for the basal ganglia.
80% of the brain’s dopamine is in the basal ganglia.

This figure shows a dopamine neuron in substantia nigra
that responded to unexpected rewards that occurred in 
association with a visual cue. 

As the probability of reward increased, the cell’s response
after the reward decreased, responding instead to the
visual cue, which now predicted the reward. 

Cells respond to reward, when probability=0.
Cells respond to visual cue, when probability=1
(visual cue is now associated to reward).
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A word on eye movements

Saccades

Smooth pursuit

Rewarding behaviors

Reward implies faster movements and increased activity in the caudate nucleus
of the basal ganglia.

Activity of a neuron in the caudate nucleus as a 
monkey made saccades to a leftward target. 

At the beginning of the plot, the leftward saccade 
did not produce reward, but a rightward saccade 
did. The monkey reacted to the onset of the left 
target with a response latency of approximately 
300ms, and the cell discharged at about 8 
impulses per second.

On the trial following the left vertical line (the 
first 0 on the x-axis), the leftward saccades 
produced a reward. After the monkey 
experienced this “contingency” once, its reaction 
time quickened by nearly 100 ms and the cell’s 
discharge rate nearly doubled.
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Generating motor commands

Choosing the best movement that produces the largest reward while 
minimizing motor cost (effort)

Control policy
(costs and rewards of an action)

Body + 
Environment²

Forward modelIntegration

Sensory system
Proprioception

Vision
Audition

Touch
…

State

change
Motor

commands

Delay

Predicted

sensory

consequences

Measured

sensory

consequences

Belief about states of

Body and world 

Goal selector

Evolution of control policies

Ethel Catherwood (Canada)
gold medal winner

Cornelius Johnson (USA) 
gold medal winner

Dick Fosbury (USA)
gold medal winner

1928

1.59m

1936

2.03m

1968

2.24m
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Eye movements

Two types of eye movements: 
smooth pursuit and saccades.

Main sequence for saccades: robust relationship between
- Amplitude
- Duration
- Peak velocity

Linear

2121.2  AD

Exponential
38.0

6.134 APV 

Eye movements

Costs involved in making a saccade:

1.  There is something interesting off to one side of my fovea. I want to fixate 
this interesting thing, and I incur a cost by not looking at it.

2.  During the eye movement, I am effectively blind. The eye movement should 
complete as soon as possible.

3.  A fast movement requires large motor commands. The larger the motor 
command, the larger the noise in those commands. Noisy motor commands 
produce inaccurate movements.

Policy: Try to find a way to move the eyes to the target as soon as possible, 
while minimizing the motor commands.



27

Internal models

Predicting consequences of motor commands: internal models

Control policy
(costs and rewards of an action)

Body + 
Environment²

Forward modelIntegration

Sensory system
Proprioception

Vision
Audition

Touch
…

State

change
Motor

commands

Delay

Predicted

sensory

consequences

Measured

sensory

consequences

Belief about states of

Body and world 

Goal selector

Internal models

Prediction Reaction time



28

Internal models: eye/hand coordination
When subjects are asked to use their eyes to track their hand during an 
active movement, the eyes look ahead by about 200ms.

Active trials: subject move their hand but cannot see it.

Eye position

Hand position

About 200ms after a saccade, the hand 

reaches where the eyes are looking.

Internal models: eye/hand coordination
When subjects are asked to use their eyes to track their hand during a 
passive movement, the eyes lag behind the hand.

Passive trials: robot moves the hand.
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Internal models: cerebellum
Predicting the sensory consequences of motor commands depends on the cerebellum

Patient HK (cerebellar agenesis)

Experimental conditions: 

1) Experimenter drops the ball at 
random times.  This tests the 
sensory feedback pathways.

2) The subject holds the ball and 
drops it.  This tests the 
predictive pathways.

Nowak et al. (2007) Neuropsychologia

Internal models: cerebellum

Feedback: normal motor responses to perturbation

3 trials

Nowak et al. (2007) Neuropsychologia
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Internal models: cerebellum

Feedforward: no ability to predict sensory consequences of self-
generated motor commands

Nowak et al. (2007) Neuropsychologia

Healthy subjects Patient HK

… so far…

• Implementation of smart mechanisms need a CNS
• Simple (jerk) to complex (OFC) approaches
• How to deal with the myriad contexts, noise, delays…
• Behavioral and clinical evidence  of IM
• What drives action (reward, effort)
• Evolution of control policies

• But still: how do we learn??
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Motor learning

Internal models must cope with changes all the time
How do we learn??

Karniel, 2011, Front in Neurosci

Motor learning

Internal models must cope with changes all the time
How do we learn flexibly and efficiently??
Generalization Transfer Consolidation

Generalization formalized with RBF: Purkinje cells fire at preferred 
spatial directions
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Motor learning

Internal models must cope with changes all the time
How do we learn flexibly and efficiently??

Generalization formalized with RBF: Purkinje cells fire at preferred 
spatial directions

Knill and Pouget, Trends Neurosci, 2004

Motor learning

Again, ambiguity because of redundancy
- Coordinate transformation from Cartesian space to muscle space
- #ext dof << #int dof (muscles: 100:1, joints: 30:1)
- Degree-of-freedom problem: Bernstein 1967

- How to interpret an error signal?

Goal Goal

?
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Credit assignment problem

• This question can be translated experimentally in a 
redundant task

White and Diedrichsen., Curr Biol, 2010.

Credit assignment problem

• In complex high level movements, causality is sometimes 
hard to infer: Reinforcement learning may be a better 
strategy

• If a tennis player systematically misses her serve, which is 
responsible?

- fatigue?
- Racket too lose?
- Hit too early
- …
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Reinforcement learning

• In complex high level movements, causality is sometimes 
hard to infer: Reinforcement learning may be a better 
strategy

• Associate an action to a reward provided by the system

• Goal: max discounted reward over time (dopamine!)

• Needs other information such that relative 
success/failure of movement

• Because RL is inherently unsigned, exploration is 
important and slows the learning process down

Motor learning

Again, ambiguity because of redundancy

• Freeze or sleeve: decrease #dof by linking unrelevant dof together
But… cannot explain why on average the variability in internal 
coordinates > variability in task-space coordinates

Todorov and Jordan, Nat Neurosci, 2002
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Motor learning

Again, ambiguity because of redundancy

• Operational space control and Inverse kinematics control
Desired movement in task space can be transformed in desired 
movement in internal space

 Need Jacobian of the kinematics of the movement system

Partition of dof:
• A subset of (chosen) dof are constrained
• Unconstrained manifold: dof used to optimize other criteria 

(energy expenditure, joint limits etc)

Generic approach:

Error based learning
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Error based learning

• Importance of error magnitude and direction
• Need to estimate gradient of error wrt each component 

of the motor command

• So powerful that adaptation occurs trial by trial even if 
explicit instruction NOT to adapt

Experimental perturbations

Force fields stimuli allow simulation of new objects

- Elastic

- Viscous

- Inertial

- Gravitationnal

- Unstable

- Combinations of these types

xkF




xkF






xkF






 gfF 



 



fF 
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Error based learning

• Problems of local optimums…

• Explains many behavioral results
Visuomotor, force fields, grip force

• The CB and neo-cortex play a crucial role in error based 
learning

Impedance control
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Impedance control

Use-dependent learning

 How to improve further??

But But

?

- Use-dependent

2 Parallel mechanisms

- Error-based
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Use-dependent learning

• State of the motor system can change through pure 
repetitions even in absence of outcome

Diedrichsen et al., JN, 2010.

Use-dependent learning

• Combinations of different learning mechanisms occur

Diedrichsen et al., JN, 2010.
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Structural learning

• Combinations of different learning mechanisms occur

• Parameters of a specific task can be learned quickly 
through e.g. Error-based learning

• Expose someone to RND perturbation sharing the same 
structure

 What about the structure of the task?

A change of gravity?
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Alterer la gravite

Ground-based facilities
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A good approach to test structural learning

A good approach to test structural learning
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Parabolic flights

Parabolic flights
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Parabolic flights

Parabolic flights
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Alterer la gravite
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Range of gravity explored

Centrifuges
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Can we learn anything?

• There are conditions in which learning is impossible (or 
very difficult)

• Examples: conflicting force fields, force fields varying 
explicitly on time

Can we learn anything?

• Relevant cue for conflicting FF learning
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The Bayesian brain

• Sensorimotor memory is a inestimable source of 
knowledge

• How to update that database?
• Real world is uncertain, feedbacks are in different 

modalities, guesses are necessary… probabilities!

• Bayesian inference: optimal integration of prior 
knowledge and sensed noisy information

• Many artificial and biological neural nets can be interpreted as Bayes optimal 
signal processing systems, despite possessing neither explicit knowledge of 
Bayes rule nor knowledge of the probability distribution of the involved 
variables.

Humans behave in a Bayes optimal way

Koerding et al., 2006

(A) Sensory noise results from 
different uncertainties. Motor noise 
will induce variability on the target.

(B) Illustration in tennis: integration 
of likelihood with priors.

(C) Reliance on priors increase with 
uncertainty about the environment.
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Mathematical view of motor control

Motor noise

Sensory noise

Sensory state of our body and 
the world we interact with

What we can observe 
about the state

Total cost to 
minimize

Feedback control policy

Belief about state

Motor command

Predicted sensory 
consequences

Measured 
sensory 
consequences

Control costTracking cost

Mathematical view of motor control

Expected reward of 
a movement

Motor cost for a 
movement

Parkinson disease

putamen

caudate

ventricles

cerebellum

In PD, there is a degeneration of 
dopaminergic neurons in the substantia
nigra.  This results in severe loss of 
dopamine in the basal ganglia, especially 
the putamen.

These patients exhibit very slow 
movements (bradykinesia), very low voice, 
and very small writing (micrographia).

Loss of dopamine can be viewed as a loss 
of expected reward, which in turn 
increases the relative costs of the motor 
commands with respect to the expected 
reward. 


