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Data processing

Given a time series of data points x1, x2, … xN:

Forecaster
Computes the best guess for xN+1

Smoother
Looks back at the data and computes the best possible xi taking into 
account the points before and after xi

Filter
Provides a correction for xN+1, taking into account x1, … xN and an 
inaccurate measurement of xN+1
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Filters

Samples
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A filter is used to throw out noise from interesting and meaningful 
but uncertain measurements

Kalman filters: intuition
The Kalman filter is an algorithm (used since the 1960s) for improving vehicle 
navigation, that yields an optimized estimate of the system's state (e.g. position 
and velocity). 

The algorithm works recursively in real time on streams of noisy input observation 
data (e.g. sensor measurements) and filters out errors using a least-squares curve-
fit optimized with a mathematical prediction of future states generated through a 
modeling of the system's physical characteristics. 

The model estimate is compared to the observation and this difference is scaled by 
a factor known as the Kalman Gain, which is then fed back as an input into the 
model for the purpose of improving subsequent predictions. The gain is adaptive 
for improved performance. 
With a high gain, the filter follows the observations more closely. 
With a low gain, the filter follows the model predictions more closely. 

This method produces estimates that tend to be closer to the true unknown values
than those that would be based on a single measurement alone or the model 
predictions alone.
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Kalman filters: intuition
The Kalman filter may be directly applicable to modeling motor control.

Control policy
(costs and rewards of an action)

Body + 
Environment

Forward modelIntegration

Sensory system
Proprioception

Vision
Audition

Touch
…

State

change
Motor

commands

Delay

Predicted

sensory

consequences

Measured

sensory

consequences

Belief about states of

Body and world 

Reward expectation

of sensory

states

A real example (1)

Sensory cancellation mechanism. On the basis of efference copy, a forward model
predicts the sensory feedback that will result from a planned action. 
Subtracting this prediction from the actual sensory input reveals an estimate of the 
sensory feedback due to external influences
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A real example (2)

Koerding et al., 2006

(A) Sensory noise results from different 
uncertainties. Motor noise will induce 
variability on the target.

(B) Illustration in tennis: integration of 
likelihood with priors.

(C) Reliance on priors increase with 
uncertainty about the environment.

Refresher

Pierre Simon de Laplace
(1749-1827)

A Philosophical Essay on Probabilities (1814)

“Probability is the ratio of the number of favorable cases to 
that of all cases possible.”

Suppose we throw a coin twice.  What is the probability that we will 
throw exactly one head?

There are four equally possible cases that might arise:  

1. One head and one tail.

2. One tail and one head.

3. Two tails.

4. Two heads.

So there are 2 favorable cases that will give us a head.  

The probability that we seek is 2/4.

Laplace firmly believed that, in reality, every event is fully determined by general laws of the universe.  But nature is complex and we are woefully 

ignorant of her ways; we must therefore calculate probabilities to compensate for our limitations.  Event, in other words, are probable only relative 

to our meager knowledge.  In an epigram that has defined strict determinism ever since, Laplace boasted that if anyone could provide a complete 

account of the position and motion of every particle in the universe at any single movement, then total knowledge of nature’s laws would permit a 

full determination of all future history.  Laplace directly links the need for a theory of probability to human ignorance of nature’s deterministic ways.  

He writes: “So it is that we owe to the weakness of the human mind one of the most delicate and ingenious of mathematical theories, the science 

of chance or probability.” (Analytical Theory of Probabilities, as cited by Stephen J. Gould, Dinosaurs in a Haystack, p. 27.
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A quick refresher on basic statistics
And

Matrix algebra

Refresher: Independence

If events A and B are independent of one another, the probability of their combined 
existence is the product of their respective probabilities.

Example: Suppose we throw two dice at once. 
The probability of getting “snake eyes” (two ones) is 1/36.  

Consequence: The probability that a simple event in the same circumstances 
will occur consecutively a given number of times is equal to the probability of 
this simple event raised to the power indicated by this number.”



6

Conditional probability

When two events depend upon each other, the probability of the 

compound event is the product of the probability of the first event and the 

probability that, this event having occurred, the second will occur.

Example:

Two urns contain only white balls (value = 1). 

One urn contains only black balls (value = 0).

We take one ball from urn C.

What is the probability that it is white? A            B          C

A B C

1 1 0

0 1 1

1 0 1
2 out of 3:

Now, knowing that one white ball has been picked from urn C, the probability of 

drawing a white ball from urn B is ½.

Bayes rule

Therefore, the probability of drawing 2 white balls from urns C and B is:

Conditional probabilities:

Commutativity

Hence, we derive the Bayes rule:
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Bayes rule: Example

In a group of people, 40% are male (M) and 60% are female (F). 

Unfortunately, 50% of males smoke (S) and 30% of females smoke.

What is the probability that a smoker is male?

We formalize the problem as follows:

Bayes rule: Example

We apply Bayes rule:

In the discrete case, integral becomes a sum:

By replacing:
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Expected value and variance

For x and y, scalar random variables and a and b, scalar:

Linear operator:

Expected value and variance
For x and y, scalar random variables and a, scalar:

Not a linear operator:
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Binomial distribution
Probability distribution of number of successes of n independent 

yes/no experiments.

Boolean random variables:

Probability to get a tail (x1=1) when throwing a coin is ½:

If N is # times a trial has succeeded:

The probability to get N successes in N trials is:

Expected values and variances of binomial random variables are:

Binomial and normal distribution
If N is large enough, then the skew of the distribution is not too great and an 
excellent approximation to B(n, q) is given by the normal distribution.

What does 

“N is large enough”

mean??

Rules of thumb…
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Normal distribution
Motivation: Central Limit Theorem:

“The mean of a sufficiently large number of independent random 

variables, each with finite mean and variance, will be approximately 

normally distributed”

Scalar case

Expected values and variances:

2 2

1

2

x

2.5% 2.5%95%

95% of the data:

Normal distribution
Vector case

Expected values of a matrix are calculated element-wise

The vector x also follows a normal distribution with 

mean and covariance matrix C:

The pdf generalizes to the form below:

Scalar Vector

Expected value

Variance



11

Covariance matrix
Covariance matrix C

Properties: 

- positive semi-definite

- symmetric

For independent variables, C becomes diagonal. Rhos measure the 

degree of correlation between xi and xj.

Covariance matrix: Example

-6 -4 -2 2 4 6

-6

-4

-2

2

4

6

Observations about the data: 

- x1 and x2 are not independent
- Variance of x2 is greater than x1 

- x1 and x2 have a negative correlation

1
x

2
x

-6 -4 -2 2 4 6

-6

-4

-2

2

4

6

Data fall inside this 
ellipse with 75% 
probability

with 50% 
probability

with 25% 
probability

Ellipses representing 
regions of constant 
probability density
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Variance and covariance: scalar

See before:

Variance of the sum of two random variables:

Covariance of two random variables:

Var and cov: vector and matrices

Var and cov of vector random variables produce symmetric positive definite matrices

x and y, random vector variables; A and B, constant matrices; a, constant 

vector
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Bases are set. 
Derivation of the Kalman Filter

A simple model to illustrate uncertainty

Parameter variance depends only on input selection and noise.

A noisy process produces n data points (x,y) and we form a maximum 
likelihood estimate of w.

Star denotes real but unknown parameter value. We assume zero-mean 
Gaussian noise with some variance.

This is just a multiple regression. 
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Parameter variance depends only on input selection and noise.

We run the same noisy process again with the same sequence of x’s and we 
re-estimate w:

Etc… until n. 

The distribution of the resulting w will have a covariance that depends only 
on the sequence of inputs, the bases that encode those inputs, and the noise 
sigma.

A simple model to illustrate uncertainty

Illustrate uncertainty: example 1

x1 x2 y*

1 0 0.5

1 0 0.5

1 0 0.5

1 0 0.5

0 1 0.5

Input history (for each line, N measurements)

x1 was “on” 80% of the 
time; so I’m pretty sure 
about w1.  

However, x2 was “on” 
only once, so I’m 
uncertain about w2.
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Illustrate uncertainty: example 1

Simple matlab simulation:

sig=1;

N=1000;

X=[1 0 ; 1 0 ; 1 0 ; 1 0 ; 0 1]; % inp 1

yr=[0 0 0 0 1]; 

for i=1:5

ye(i,:)=yr(i)*ones(1,N)+sig*randn(1,N);

end

w=inv(X'*X)*X'*ye;

plot(w(1,:),w(2,:),'.')

drawline(mean(w(1,:)));

drawline(mean(w(2,:)),'dir','horz');

mean(w')

axis equal

xlabel('w_1');

ylabel('w_2');

Illustrate uncertainty: example 2

x1 x2 y*

1 1 1

1 1 1

1 1 1

1 1 1

1 0 0.5

Input history (for each line, N measurements)

x1 and x2 were “on” mostly together.  The 
weight var-cov matrix shows that what I learned 
is that:

I do not know individual values of w1 and w2

with much certainty.

x1 appeared slightly more often than x2, so I’m a 
little more certain about the value of w1.
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Illustrate uncertainty: example 2

x1 and x2 were “on” mostly together.  The 
weight var-cov matrix shows that what I learned 
is that:

I do not know individual values of w1 and w2

with much certainty.

x1 appeared slightly more often than x2, so I’m a 
little more certain about the value of w1.

Illustrate uncertainty: example 3

x1 x2 y*

0 1 0.5

0 1 0.5

0 1 0.5

0 1 0.5

1 1 1

x2 was mostly “on”. I’m pretty 
certain about w2, but I am very 
uncertain about w1. 

Occasionally x1 and x2 were on 
together, so I have some reason to 
believe that w1 + w2 =1.
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Effect of uncertainty on learning rate

When you observe an error at time n, the amount that you should change x 
should depend on how certain you are about x:

The more certain you are, the less you should be influenced by the error. 

The less certain you are, the more you should “pay attention” to the error.  

Rudolph E. Kalman (1960) A new approach to linear filtering and prediction 
problems.  Transactions of the ASME–Journal of Basic Engineering, 82 (Series 
D): 35-45.

Research Institute for Advanced Study
7212 Bellona Ave, Baltimore, MD

Error
Kalman 

gain

Example: Running estimate of average

We have measurements at different time steps

Goal: compute the average n of n data points:

There are two approaches:

1. Re-compute the mean

2. Adapt the current value of the mean… computationally more efficient

How far is the current measurement from the calculated mean?

K=Kalman gain: 
learning rate decreases as more 
measurements become available
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Initial assumptions

Objective: adjust learning gain in order to minimize model uncertainty

Gaussian model:

With:

True state (position, velocity, force etc

Command or excitation input

Measurement of state infected by noise

Transition system matrix (dynamics of the system etc)

Command or input matrix

Observation matrix (Identity if fully observable)

Process noise with covariance matrix Q

Measurement noise with covariance matrix R

Initial assumptions

• My estimate of x before I see y at time n, given that I have seen y up to time n-1:

• Error at time n:

• My estimate of x after I see y at time n:

• A priori error (before I observed the data):

• A posteriori error (after I observed the data):

• Prior covariance of parameters error:

• Posterior covariance of parameters error:

Covariances catch the uncertainty about our model parameters. Goal is to update 
the parameters such that we minimize the uncertainty a posteriori
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Where the trace comes into the game

The trace of parameters covariance matrix is the sum of squared parameters error. 
When minimizing a function, always convenient to consider a quadratic cost.

Sum of diagonal elements

Because 
mean is 0

Goal reformulated: find Kalman Gain K such that we 
minimize the sum of squared error in our 
parameter estimate. 
This sum is the trace of matrix P. 
Given an observation yn, we want to find K such 
that we minimize the variance of our estimate x:

Development of posterior covariance

By definition:

We have to minimize the trace of the above expression relative to K:
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Development of trace of Pn|n

To satisfy this equation:

Lot of uncertainty about the model : We learn a lot from the current error
Pretty sure about my model : We ignore the current error

Kalman gain equation

Update model uncertainty Pn|n

Having found the Kalman Gain, we need to update the current uncertainty from 
the prior covariance at time n-1 and K

We need to plug the Kalman Gain in the above and simplify
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Update model uncertainty Pn|n

Which leads to the following:

If we simplify notations, we get:

Which finally gives the 
update equation:

What we have so far

True state-space model :

Process noise with covariance matrix Q

Measurement noise with covariance matrix R

Predictor of next state from previous estimated state

(1)

Next state given all
previous measures
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What we have so far

Updates

(2)

The Kalman Gain tells us how much we rely on the error:

(3)

(4)

Knowing the Kalman Gain, we can update our estimate of the current state:

We also need to update the covariance of our measurements:
after we observed a new input y, the uncertainty associated with the weight of 
that input decreases 

However, we still lack something… we also need to project our uncertainty 
about the state because state noise accumulates (Q) 

Forecast state noise

From definition:

Where is the prior error (before we observe the new data)

Projected state:

We calculate the variance of the prior error (shifted one state in the future)

(5) This last equation completes the picture
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Summary of the Kalman Filter

Update
Or

Correct

Predict
Or

Project

1. Kalman gain
2. Update state estimate
3. Update covariance of measurements

4. Project state to n+1
5. Project error covariance to state n+1

How to set the
initial values?

If we don’t know 
anything about everything
Before getting  y1
then

Example: damped mass-spring system

Clean system
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Example: damped mass-spring system

Initial values

This system will be simulated during 
10 seconds (time step 25ms) and 
excited during 500ms after 5 seconds.

Playing with physical parameters

Run matlab simulation:
‘owh_launch_kalman’

Play with physical parameters (k: 100 to 130 and c: 2 to 3).
Shows position, command and K.
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Playing with uncertainties
Q: 10-4 to 50x10-4

High noise in the state update model produces increased uncertainty in 
model parameters (k, m, c).
Therefore: high learning rates.

High Q

Low Q

Playing with uncertainties

R: 0.1 to 0.5
High noise in the measurements also increase our uncertainty about 
parameters. But this increase is small relative to measurement uncertainty.  
Therefore, higher measurement noise leads to lower learning rates.  

Low sigmas

High Sigmas
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Application: Data fusion
We have two sensors that independently measure something. We would like to 
combine their measures to form a better estimate of the true state.

We don’t know 
The real state…

What should the weight be?

Application: Data fusion
What should the weight be?
Intuitively, the largest on the most reliable.

To validate this intuition, we need to formalize our hypothesis about how these 
data are generated. We design a state-space model:

Hidden state can
Vary over time
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Application: Data fusion

General state-space equations:

This simplifies in our particular case to:

Initial values:

Application: Data fusion
It can be shown that:

The predicted state now becomes:

Covariance of the posterior is (details not shown): 

Better than the variance of 
either sensor
taken separately.
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Application: Data fusion
Covariance of the posterior is (details not shown): 

Better than the variance of 
either sensor
taken separately.
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Application of KF in sensorimotor control

DM Wolpert et al. (1995) Science 269:1880
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Application of KF in sensorimotor control

x

y

u u

x

y

Motor command

Sensory measurement

State of our body x

y

A

B

H

The model for estimation of sensory 

state from sensory feedback

For whatever reason, the brain has an incorrect model 
of the arm.  It overestimates the effect of motor 
commands on changes in limb position.

Next step…

We can optimally integrate measurements.
However, we still don’t know how to use that information to 
generate appropriate commands.

The next step is to integrate Kalman filtering techniques in 
optimal control in order to find the best series of command under a 
certain cost function to accomplish a given task.

See you in next chapter…


